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Finite-amplitude salt fingers in a vertically
bounded layer
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(Received 13 October 1999 and in revised form 26 June 2000)

We compute numerically the amplitude of long thin fingers that form in a liquid
stratified with sugar S∗ and salt T ∗ (measured in buoyancy units), for which τ =
kS/kT = 1/3 is the ratio of the two diffusivities and the Prandtl number is Pr =
ν/kT ∼ 103, where ν is the viscosity. The finger layer in our model is bounded by
rigid and slippery horizontal surfaces with constant T ∗, S∗ (the setup is similar to
the classical Rayleigh convection problem). The numerically computed steady fluxes
compare well with laboratory experiments in which the fingers are sandwiched between
two deep (convectively mixed) reservoirs with given concentration differences ∆T ∗,
∆S ∗. The model results, discussed in terms of a combination of asymptotic analysis
and numerical simulations over a range of density ratio R = ∆T ∗/∆S∗, are consistent
with the (∆S∗)4/3 similarity law for the fluxes. The dimensional interfacial height
(H∗) in the reservoir experiments (unlike that in our rigid lid model) is not an
independent parameter, but it adjusts to a statistically steady value proportional to
(∆S∗)−1/3. This similarity law is also explained by our model when it is supplemented
by a consideration of the stability of the very thin horizontal boundary layers with
large gradients (∂S∗/∂z) which form near the rigid surfaces. The preference for
three-dimensional salt fingers is also explained by a combination of analytical and
numerical considerations.

1. Introduction
The laboratory setup that has most often been used to obtain the fluxes for

doubly diffusive convection consists of two deep and well-mixed fluid reservoirs,
between which long salt fingers form in some finite vertical interval 0 < z < H∗ (e.g.
Lambert & Demenkow 1971), where H∗ is a dimensional height. Although double
diffusion in the ocean (see the review of Schmitt 1994) involves salt and heat, with
a small diffusivity ratio (τ = 1/80), the experimental difficulties in realizing this are
such that in most of the laboratory experiments an isothermal two-solute fluid (e.g.
sugar and salt) is used to obtain physical insight into salt fingering. Accordingly the
symbol S∗ will subsequently refer to the density anomaly due to the substance (sugar)
with lower diffusivity (kS ) and T ∗ will correspondingly refer to the density anomaly
of the substance (salt) with higher diffusivity (kT ). (Thus the thermal and salinity
expansion coefficients are absorbed in the concentrations.) In this case τ = 1/3,
Pr = ν/kT ∼ 103 � 1 and a useful asymptotic expansion may be made (§ 2) in the
Prandtl number Pr.

Laboratory experiments (e.g. Linden 1978) show that at the ends (z = 0, H∗) of the
fingers there are very thin horizontal transition layers with large gradients (∂S ∗/∂z,
∂T ∗/∂z), which couple the finger region to the reservoirs. The vertical velocity within
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an individual finger is greatly reduced as it approaches and passes the transition
region. The fingers are then sheared as they pass through the transition layer and
merge into buoyant plumes which maintain the large-scale convective turbulence in
the reservoirs. Clearly, the connection conditions at z = 0, H∗ for the finger region are
intractable, and one seeks a simpler model which can partially explain the laboratory
observations. Radko & Stern (1999) suggested that the flux laws in the reservoir
experiment could be understood (within a factor of two) using the parallel plate
geometry of the classical Rayleigh convection problem, i.e. by assuming rigid slippery
surfaces at z = 0, H∗, across which specified ∆T ∗,∆S∗ are maintained. In this paper
such calculations are made over a wide range of density ratios R = ∆T ∗/∆S∗ and
H∗; the magnitudes and ratio of the two fluxes are compared with the experiment.

An obvious difference between our model and the laboratory experiments is that
H∗ in the former case is an independent variable, whereas the experimental H∗ adjusts
from its initial height to a unique value depending on (∆T ∗,∆S∗), as was convincingly
verified by Linden (1978). Stern & Turner (1969) suggested that the fluxes in the
quasi-equilibrium state are also independent of the initial value of the interfacial
height and are functions of ∆T ∗,∆S∗ only. The consequent dimensional arguments
results in the similarity law (first suggested by Turner 1967) for the fluxes:

FS = C(R, τ, ν/kT )(∆S∗)4/3.

The value of the flux law constant C measured by Stern & Turner (1969) is
C ∼ 10−2 cm s−1, while Lambert & Demenkow (1971) found values of C ranging
from 0.5× 10−3 to 0.75× 10−3. These results were partially reconciled by Griffiths &
Ruddick (1980) who measured C for various density ratios, and discovered that the
dependence of C on R is extremely strong: approximately C ∼ R−6. Taylor & Veronis
(1996) concentrated on large values of density ratios 2.5 < R < 3 (corresponding to a
weak instability) and also observed the C ∼ R−6 dependence, even though their values
were offset from the previous results (Griffiths & Ruddick 1980) towards larger values
of C . A theoretical explanation of such a rapid decrease in the fluxes with R will be
given in § 5, and it will be shown that the values of C computed from our model are
consistent with the experiments for various values of H∗. Such an agreement implies
that the dependence of C on H∗ in the rigid lid model is very weak, a result which is
also explained in § 5.

A separate question is how to explain the (unique) H∗ in the experiments. Shen
(1989) used direct numerical simulations to study the formation of salt finger layers
and suggested that the breakup of fingers occurs due to the processes in the thin
boundary layers (with local density inversions) at the edges of the finger interface.
This idea is developed further (§ 6) in the present paper in order to obtain an explicit
expression for the equilibrium H∗.

One of the most interesting aspects of salt fingering is the statistics of their
horizontal pattern selection. In the linear instability theory the growth rate of a
normal mode with large vertical wavelength is determined only by the absolute value
of the horizontal wavenumber, and therefore, according to the linear theory, any
planform of motion satisfying the Helmholtz equation with the same wavenumber
is equally likely to be realized (wavenumber degeneracy). However, the observations
of finite-amplitude salt fingers (e.g. Shirtcliffe & Turner 1970) indicate that they
have a remarkably regular square cross-section. This preference must be due to
the nonlinear interactions between different modes (or to statistical considerations).
Proctor & Holyer (1986) attempted to explain the planform selection by developing
a weakly nonlinear theory for the long thin salt fingers. However, they concluded,
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in conflict with the experiments, that the (two-dimensional) roll-type planforms are
preferred over the square cells. One reason for the disagreement might be that their
expansion was pivoted about a mode of zero growth rate (unlike the present paper
where the expansion includes the fastest growing modes). Another and probably
more important reason is that thin horizontal boundary layers form at the edges
of the finger zone and these have not been properly represented in the Proctor &
Holyer’s theory. We show that these boundary layers are extremely important for
the planform selection, and prove that when these layers are included the rolls are
unstable with respect to ‘cross-roll’ perturbations. In some cases this instability leads
to a disruption of the rolls and formation of the square cells, which may explain the
observed three-dimensional structure of the salt fingers.

The reservoir experiments discussed above should be distinguished from the less
frequent (but more oceanically relevant) setup consisting of an effectively unbounded
finger domain, whose undisturbed state consists of uniform vertical gradients ∂T̄ ∗/∂z,
∂S̄∗/∂z (Stern & Turner 1969; Taylor 1993). In that case the evolved statistically
steady fluxes depend on these temperature and salinity gradients, rather than on the
temperature–salinity differences (∆T ∗,∆S∗) as in the present reservoir experiments.
An unbounded model was considered by RS, who computed the fluxes for a limited
range of the density ratios, assuming the three-dimensional spatial periodicity of the
temperature and salinity perturbations.

2. Preliminary calculations
Our starting point is the Boussinesq equations which are non-dimensionalized using

the conventional ‘salt finger width’ λ = (kT ν/gT̄
∗
z )1/4 as the dimensional length scale,

where T̄ ∗z = ∆T ∗/H∗ is the undisturbed dimensional temperature gradient (recall
that ∆T ∗ is the temperature difference across the finger layer in buoyancy units
and H∗ is the dimensional height). T ∗z λ is used as the scale for both salinity and
temperature perturbations, kT/λ is the velocity scale, and νkT/λ

2 is the pressure
scale. Let [T (x, y, z, t), S(x, y, z, t)] denote the non-dimensionalized departures of the
temperature and salinity from the undisturbed (linear) state [T̄ (z), S̄ (z)]; [θ(z), σ(z)]
are the horizontal averages of (T , S ) and T ′ ≡ T − θ(z, t), S ′ ≡ S − σ(z, t).

When the assumption Pr = ν/kT � 1, appropriate to sugar–salt fingers (Pr ∼ 800),
is made the Boussinesq equations reduce to the high Prandtl number equations

0 = −∇p+ ∇2v + (T ′ − S ′)k, (2.1a)

∇ · v = 0, (2.1b)

d

dt
T + w = ∇2T , (2.1c)

d

dt
S + (1/R)w = τ∇2S. (2.1d)

The influence of the undisturbed T̄ (z), S̄ (z) fields appears in the coefficients of w.
The rigid boundaries are at z = 0, z = H , where T = S = w = 0 and H is a
non-dimensional height of the finger zone. In addition to the calculations made using
(2.1), which will be discussed below, we also made several numerical experiments (not
shown) with the full Navier–Stokes system of equations for large but finite values of
Pr and verified that the results for Pr > 10 differ little from those obtained using the
much simpler asymptotic system (2.1).
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(a) (b)T!(x, z) S!(x, z)

Figure 1. (a) T ′ isopleths for the steady two-dimensional fingers obtained by the numerical
integration of (2.1) for R = 2.6. (b) S ′ isopleths for the state in (a). Calculations were initiated by
a normal mode (for the undisturbed state) with aspect ratio 1 : 10. Note the remarkably uniform
region in the interior of the domain and the boundary layers near z = 0, H whose thickness is
comparable to the finger width.

We solved equations (2.1) numerically using a fully dealiased pseudo-spectral
method in which all the equations were inverted exactly in the Fourier space. The
linear diffusive terms were evaluated using the integrating factors technique (Canuto et
al. 1987), and a fourth-order Runge–Kutta scheme was used for the time integration.
This code was described in RS, and in the present rigid boundary problem we only
modified it by using a Fourier expansion of (T , S, w) in sin (mz) functions, rather
than the exp(imz) set employed in the unbounded model (RS). In all the following
calculations we keep τ = 1/3 (corresponding to the sugar–salt laboratory experiment)
and consider various values of the aspect ratio µ = (fastest growing wavelength)/(2H)
and of the density ratio R = T̄z/S̄z .

We start with a strictly two-dimensional numerical calculation with the aspect ratio
µ = 0.1, initialized with the fastest growing linear normal mode (Stern & Radko 1998)
hereafter) using the relatively large (i.e. close to τ−1) R = 2.6:

T = 0.2 sin (kfx) sin (mz), where kf ≈
( ε

3

)1/4

, ε =
1

Rτ
− 1. (2.2)

Although this value of k corresponds to the maximum growth rate for the long
waves (m/kf → 0) and for small ε (Stern & Radko 1998), it is close to that for the
small but finite values of m and ε used herein. Even for large ε the exact value
of the fastest growing wavelength does not differ much from that corresponding
to (2.2); in particular, for R = 1.4 (which is one of the smallest values of density
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ratio considered herein) the exact fastest growing wavelength is L = 10.66, while (2.2)
gives L = 7.99, and the corresponding fluxes are also comparable. The computational
grid for this calculation, consisting of (Nx,Nz) = (8, 64) points, resolved only one
finger pair, and the time step employed was ∆t = 0.1. Initially this disturbance was
growing exponentially in agreement with the linear theory, but by t = 1000 its growth
was nonlinearly stabilized as the (T , S∗) field evolved to the steady state in figure
1(a, b). Note the remarkably uniform (in z) structure of fingers in the interior and the
well-defined purely diffusive boundary layers at z = 0, H . The vertical thickness (d)
of these is comparable to the finger width for the state in figure 1, but the detailed
examination of the boundary layers in § 5 will reveal a weak dependence of d on the
aspect ratio µ. Such structures have been observed in most of our experiments for
long (m/kf � 1) fingers, and some other examples of these steady states also appear
in Stern & Radko (1998) and Radko & Stern (1999). (Paparella & Spiegel 1999
obtained highly truncated solutions that look similar to ours, although their Prandtl
and Lewis numbers are much different from those for salt–sugar.)

A similar three-dimensional solution was obtained by initiating the calculation
using a ‘square cell’ normal mode with the same (µ, R) = (0.1, 2.6)

T = 0.2(sin (kfx) + sin (kfy)) sin (mz).

This calculation also resulted in a steady state (not shown) with a remarkably uniform
interior and diffusive boundary layers at z = 0, H . The horizontal planform remained
square, even when the steady state was reached. Especially noteworthy is the fact that
the integral characteristics for this square cell solution were close to those for the
two-dimensional counterpart; in the two-dimensional case the non-dimensional heat
flux (Nusselt number based on the purely convective flux and the undisturbed T̄z)
was Nu ≡ 〈wT 〉 = −0.25, while in the three-dimensional case Nu = −0.24. (Hereafter
the angular brackets 〈. . .〉 will denote the vertical average and overbar is a horizontal
average; the combination of the two is a volume average). The fact that in a rigid lid
model the two-dimensional fluxes are close to the corresponding three-dimensional
ones will be explained in a following asymptotic mean field theory (§ 3).

In order to demonstrate the representativeness of the calculation with only one
finger pair (in which periodicity was assumed on the distances corresponding to the
fastest growing horizontal wavelength) as compared to multiple fingers, we made
calculations for much larger horizontal sizes of the computational domain. Figure
2 shows the three-dimensional fingers that occur when the size of computational
domain (in both x and y) exceeds the finger wavelength (2π/kf) by a factor of 5. This
calculation for R = 2.6 was initiated by a small random initial perturbation and did
not result in the completely steady state; instead the spatially averaged fluxes oscillate
around the statistical averages. For future comparison of our ‘rigid lid’ model with
the observations we indicate that the flux ratio (ratio of the flux of temperature to the
flux of salt) for the calculation in figure 2 is γ = 0.95. Despite the apparent differences
in the vertical cross-sections of fingers in figure 1 and figure 2 (both for µ = 1:10,
R = 2.6), the fluxes in these states are quite comparable: in the former case we have
Nu = −0.247 and in the latter Nu = −0.27. The fluxes in the multiple-finger runs are
given in table 1 for fixed µ = 1 : 10, and for a wide range of density ratios. When
these multiple-finger fluxes were compared with fluxes in the corresponding single-
finger-pair calculations (either two- or three-dimensional calculations, since these are
close) we discovered that the difference between the two is small for large values of
R but many reach ∼ 50% level for low R.

Another test of sensitivity to the changes in size of the computational domain
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−〈wT ′〉 3D
R (5× 5 finger pairs)

2.6 0.27
2.4 0.49
2.2 0.78
2.0 1.07
1.8 1.48
1.6 1.96
1.4 2.50

Table 1. Heat flux (Nu) as a function of R for the large horizontal sizes (10π(ε/3)−0.25) of the
computational box. Aspect ratio is µ = 1:10. All the runs were initiated by a small three-dimensional
random perturbation.

(a) (c)

(b)

Figure 2. The isotherms of the three-dimensional state at the end of calculation (t = 1600) with large
computational domain (approximately 5× 5 fastest growing wavelengths) and R = 2.6. The height
of the computational domain is ten times larger than the fingerwidth. (a) Horizontal cross-section
across the interior of the finger zone at z = H/2; (b) horizontal cross-section across the boundary
layer (z = H/32); (c) vertical cross-section along the y = 0 plane.

was made using a three-dimensional calculation (not shown) in which the distance
between the x and y boundaries was equal to 3 fastest growing wavelengths (instead
of 5 wavelengths in table 1). This calculation for R = 1.4 was performed using a
(32, 32, 64) grid (i.e. about 10 points per fingerwidth) and resulted in Nu = −2.5,
which is consistent with the value for the corresponding five-finger calculation in
table 1. In order to make sure that the resolution used in this work (typically ∼ 8
points per finger pair) is sufficient for a reliable estimate of fluxes in the rigid lid
model we reproduced the foregoing experiment using much worse resolution (5 points
per finger pair). The resulting equilibrium fluxes changed by less than 1% and the
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structure of the (T , S) fields was quite similar to that obtained previously, which
proves the adequacy of the resolution. The fact that the fluxes are comparable in the
experiments with different horizontal sizes of the computational domain implies that
the long finite horizontal wavelengths (not included in the one-finger-pair calculations)
are not of major physical importance for the nonlinear equilibration. Thus, in order
to explain the mechanism of stabilization we may consider a very simple steady-state
one-finger-pair model in which the horizontal periodicity corresponds to the fastest
growing wavelength (2.2).

3. Asymptotic formulations (ε→ 0)

3.1. Two-dimensional theory

Consider first a simple case of a two-dimensional motion (T , S) = [T (x, z), S(x, z)].
The linear theory (see Stern & Radko 1998) suggests using the (space, time) scales
(ε−1/4, ε−3/2) of the fastest growing mode to transform (2.1), i.e. the new coordinates
x0, z0, t0 are given by

x = ε−1/4x0, z = ε−1/4z0, t = ε−3/2t0.

(As we shall see this rescaling does not preclude a slower z variation in the fingers
outside the z = 0, H boundary layers.)

Let us assume that the (ε) scale of the temperature is εq , where the exponent q
is yet to be determined. The leading-order (εq+1/2) balances of the linear terms in
the advection diffusion equations (2.1c, d) suggest scaling of the vertical velocity as
w ∼ ε1/2T ∼ εq+1/2 and the salinity S ∼ T as εq . Next, we consider the perturbations
which are (at the leading order) harmonic functions of x with a horizontal wavelength
corresponding to the fastest growing mode:

T = εqT0 sin k0x0 + · · · , S = εqS0 sin k0x0 + · · · , w = εq+1/2w0 sin k0x0 + · · · , (3.1a)

where k4
0 = (1/3)0.25 is a rescaled fastest growing wavenumber: the following theory

will show that this structure of the expansion is retained in the temporal evolution.
When (3.1a) is substituted in (2.1c, d) and the limit ε→ 0 is taken the result is

w0 =

(
∂2

∂z2
0

− k2
0

)
T0, S0 = T0, (3.1b)

and the continuity equation is satisfied if

u = εq+1/2u0 cos k0x0, u0 =

(
k−1

0

∂3

∂z3
0

− k0

∂

∂z0

)
T0.

The nonlinear terms ∇· (vT ),∇· (vS) in equations (2.1c, d) eventually equilibrate the
linear growth of the perturbation. At the leading order these terms result in generation
of the two new modes, one of which corresponds to a mean field modification
[θ(z, t), σ(z, t)], and the other mode (2kf) corresponds to the non-resonant triad (or
wave–wave) interaction. Although modes of both types formally appear at the same
order (ε2q+1/4), we shall now show that the k = 2kf term is much smaller in amplitude
than the mean-field term (θ, σ). In figure 1, for example, the variance in θ(z, t) was
7.1 × 10−2, while only 1.1 × 10−5 was in mode k = 2kf . To explain such a difference
in amplitudes of these terms consider the leading-order (ε2q+3/4) balance of the
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horizontally averaged advection diffusion equations. In the rescaled variables this is

1

2

∂

∂z0

[(
∂2

∂z2
0

− k2
0

)
T0 · T0

]
=

∂2

∂z2
0

θ0,

1

2

∂

∂z0

[(
∂2

∂z2
0

− k2
0

)
T0 · T0

]
= τ

∂2

∂z2
0

σ0,

 (3.2a)

where (θ, σ) = ε2q+1/4(θ0, σ0). For the (2kf) mode ε2q+1/4(Ttr, Str) cos(2k0x0) the corre-
sponding leading order balance is

1

2

[
∂3

∂z3
0

T0 · T0 − ∂2

∂z2
0

T0 · ∂
∂z0

T0

]
=

(
∂2

∂z2
0

− 4k2
0

)
Ttr,

1

2

[
∂3

∂z3
0

T0 · T0 − ∂2

∂z2
0

T0 · ∂
∂z0

T0

]
= τ

(
∂2

∂z2
0

− 4k2
0

)
Str.

 (3.2b)

The numerical calculations in the previous section indicate that the variation of the
(T , S) field in the interior, i.e. outside the thin boundary layers near z = 0, H , occurs
on a large vertical scale (see the almost uniform interior region in figure 1a, b). Thus in
the interior ∂/∂z0 ∼ H−1

0 ∼ µk0 � k0, and therefore (3.2a, b) yields θ0 ∼ k2
0µ
−1T 2

0 , Ttr ∼
µ3k−2

0 T 2
0 , or Ttr/θ0 ∼ µ4 � 1 for µ� 1. At the lower (say) boundary layer the

continuity of temperature across its upper edge (z0 = d0) implies that ∂Ttr/∂z0 ∼
(1/d0)Ttr|z0=d0

is also small [O(µ−4)] compared to ∂θ0/∂z0 ∼ (1/d0)θ0|z0=d0
; likewise for

the upper boundary layer. Thus, the nonlinear terms resulting from the mean field–
fundamental harmonic interaction (e.g. w0∂θ0/∂z0) will exceed the corresponding triad
terms (such as w0∂Ttr/∂z0 ∼ u0∂Ttr/∂x0) by a large factor of O(µ−4) in the boundary
layers as well as in the interior. Another reason for neglecting the ‘triad’ or wave–wave
interaction terms (one which is more relevant for the short fingers with µ = O(1)) is
that in the spectral decomposition of T ∗ the dominant mode in z is a fundamental one
proportional to sinm0z0 (see figure 1), and for such a (two-dimensional) mode the left-
hand side of (3.2b) vanished identically, while the left-hand side of (3.2a) is finite. This
implies that the amplitude of Ttr, Str is much less than the amplitude of θ0, σ0. These
considerations lead us to the following nonlinear mean field theory, similar to that
in the classical Rayleigh convection problem (Malkus & Veronis 1958). In the later
case, however, the cell aspect ratio is O(1), whereas in our theory µ is small, and this
justifies the following neglect of the triad terms (Ttr, Str) in two (and three) dimensions.

The nonlinear interaction of the mean fields (θ, σ) = ε2q+1/4(θ0, σ0) with the leading-
order k0 mode will result in the generation of the higher order sin k0x0 terms, and
their scale is obtained from a balance between the nonlinear (e.g. w ∂θ/∂z ∼ ε3q+1)
and the diffusive terms:

T = εqT0 sin k0x0 + ε2q+1/4θ0 + ε3q+1/2T2 sin k0x0 . . . ,

S = εqT0 sin k0x0 + ε2q+1/4σ0 + ε3q+1/2S2 sin k0x0 . . . .

}
(3.3)

At all orders we have to satisfy the vorticity equation (obtained from (2.1a, b))

∇4w =
∂2

∂x2
(S − T ), (3.4)

and when (3.3) is substituted in (3.4) it becomes apparent that the vertical velocity
should be expanded as

w = εq+1/2w0 sin k0x0 + ε3q+1w2 sin k0x0 . . . .

Since (∂/∂t)(T , S) ∼ ε3/2εq is required to be of the same order as the nonlinear sin k0x0
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terms (e.g. w ∂θ/∂z ∼ ε3q+1) it follows that

q = 1
4
. (3.5)

For future use we note
∂

∂z
(θ, σ) = ε

∂

∂z0

(θ0, σ0). (3.6)

The order ε3q+1 = ε7/4 balance of the advection–diffusion equations (2.1c, d), using
1/R = τ(1 + ε), then gives the prognostic equations:

∂

∂t0
T0 + w0

∂

∂z0

θ0 + w2 =

(
∂2

∂z2
0

− k2
0

)
T2,

∂

∂t0
T0 + w0

∂

∂z0

σ0 + τw0 + τw2 = τ

(
∂2

∂z2
0

− k2
0

)
S2.

 (3.7)

The leading-order (ε3/2) balance of the equation (3.4) gives(
∂2

∂z2
0

− k2
0

)3

T0 = k2
0(T2 − S2), (3.8)

where (3.1b) was used to eliminate w0. By eliminating w2 in (3.7) and then using (3.8)
to eliminate (T2 − S2) we obtain

(1− τ) ∂
∂t0

T0 + w0

∂

∂z0

(σ0 − τθ0) + τw0 = −k−2
0 τ

(
∂2

∂z2
0

− k2
0

)4

T0. (3.9)

Finally, (3.2a) is used to eliminate (∂/∂z0)(σ0, θ0) and (3.1b) is used to eliminate w0.
Then (3.9) reduces to a single evolution equation for T0:

(1− τ) ∂
∂t0

T0 +
1

2

(
1

τ
− τ
)(

∂2

∂z2
0

− k2
0

)
T0

[(
∂2

∂z2
0

− k2
0

)
T0 · T0

−
〈(

∂2

∂z2
0

− k2
0

)
T0 · T0

〉]
+ τ

(
∂2

∂z2
0

− k2
0

)
T0 + k−2

0 τ

(
∂2

∂z2
0

− k2
0

)4

T0 = 0. (3.10)

It is important to note that although ∂/∂z0 in (3.10) may be small (for µ → 0)
compared to k0 in the interior, this equation also describes the boundary layers where
∂/∂z0 is large and cannot be neglected.

Equation (3.10) for a single field variable is much simpler than the original system
(2.1), and the numerical integration of (3.10) is also extremely fast. When (3.10) was
solved numerically for the aspect ratio µ = 1 : 10 using a small initial perturbation
consisting of a normal mode (T0 = 0.2 sinm0z0, m0 = µk0), the integration resulted in a
steady state (figure 3a, b). This asymptotic solution again reveals the remarkably uni-
form interior of the fingers as well as the boundary layers near z = 0, H , features which
have been observed in the solutions of the fully nonlinear equations (2.1) (see figure 1).

The foregoing asymptotic theory leads to the following scalings of heat flux, r.m.s.
temperature and density flux

〈wT 〉 ∼ ε, 〈T ′2〉1/2 ∼ ε1/4, 〈w(T ′ − S ′)〉 ∼ ε2.
(We remark in passing that these rigid lid results differ significantly from the asymp-
totic theory for an unbounded model (see Radko & Stern 1999)). The rescaled heat flux
(Nusselt number) for the calculation µ = 0.1 in figure 3(a, b) is Nu0 = ε−1Nu = −1.67,
and the rescaled r.m.s. temperature variation is 〈0.5T 2

0 〉1/2 = 1.67.
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(a) (b)
T0(z0) T=T0(z0)sin(k0 x0)

z0 z0

0 1 2 3
x0 x0

41.3

Figure 3. (a) The steady solution of (3.10) T0(z0) for the aspect ratio of µ = 1:10. (b) The rescaled
isopleths of the leading-order temperature field T0(z0) sin k0x0 (also for µ = 1:10). Note the boundary
layers at the top and at the bottom, of thickness comparable to the finger width; note also the
remarkably uniform interior. This figure should be compared with the corresponding solution of the
original equations in figure 1. The rescaled Nusselt number for this state is Nu0 = ε−1Nu = −1.67.

In order to estimate the accuracy of the ε → 0 theory we performed finite-ε
numerical calculations with one fully resolved finger pair using the original system
(2.1). We found steady states (similar to that in figure 1) for 1.2 < R < 2.9 and fixed
µ = 1 : 10. The results are in table 2, which demonstrate that the region of validity
of (3.10) significantly exceeds that required by ε = [(τR)−1 − 1] � 1, and provides
an additional justification for the neglect of the triad terms (at least for µ = 0.1
employed here). Even for the largest value of ε considered, corresponding to R = 1.2,
the error in ε → 0 theory (for the temperature amplitude) is only 30%; and for
the typical value of density ratio R ∼ 1.6 for the laboratory sugar–salt experiments
(Lambert & Demenkow 1971) the error is ∼ 17%. We also note that although formal
analysis allows us to neglect the triad terms (k = 2k0) only for long fingers (µ� 1),
additional numerical calculations (not shown) indicate that this mean field theory is
quite accurate for all values of µ, not only the small ones.

It now only remains to determine how our asymptotic solution depends on the
aspect ratio (µ). For this purpose we numerically obtained the steady solutions of
(3.10) for µ = 1:10, 1:20, . . . , 1:160. All the solutions look similar to that in figure
3(a, b), and the rescaled fluxes (Nu0) for these steady states are plotted as a function
of µ (using logarithmic coordinates) in figure 4. All the points in figure 4 fall on an
almost straight line whose slope corresponds to a power law Nu0(µ) ∝ µ−1.2. This
relationship will be explained by considering the µ→ 0 limit (§ 5).
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Relative error

Nu = −〈wT 〉 〈T 2〉1/2 in r.m.s. T ′
R using (2.1) −εNu0 using (2.1) 〈0.5T 2

0 〉1/2ε1/4 (%)

2.9 0.0566 0.0575 0.71 0.72 1
2.8 0.117 0.119 0.85 0.86 1
2.6 0.247 0.256 1.02 1.04 2
2.4 0.385 0.417 1.12 1.18 5
2.2 0.547 0.607 1.21 1.29 7
2.0 0.725 0.835 1.28 1.40 9
1.8 0.920 1.113 1.34 1.51 13
1.6 1.137 1.461 1.38 1.61 17
1.4 1.379 1.908 1.41 1.72 22
1.2 1.651 2.505 1.42 1.84 30

Table 2. Comparison of the asymptotic theory with the exact one-finger-pair calculation.

100

10

1.0

0.1

Nu (l0)

–6/5

0.002 0.020 0.200
l

Figure 4. The rescaled Nusselt number as a function of the aspect ratio µ in logarithmic coordinates.
All the data points Nu0(µ) (denoted by crosses) belong to a straight line whose slope corresponds
to a power law Nu0 ∝ µ−1.2.

3.2. Three-dimensional case

Let us use the scalings determined in the foregoing two-dimensional calculations for
a three-dimensional asymptotic theory starting with

T = ε1/4T1(z0) sin k0x0 + ε1/4T2(z0) sin k0y0 + (higher-order terms). (3.11)

The nonlinear advection terms in (2.1c, d) will now result in the generation of the
four types of modes at the order ε3/4; these include the mean-field mode (θ, σ) and
the modes proportional to cos 2k0x0, cos 2k0y0, sin k0x0 sin k0y0.

As was the case in the two-dimensional calculation we again find that among these
modes the mean-field (θ, σ) terms are the largest. For example, in the square-cell
steady state with µ = 1 : 10, R = 2.6 (discussed in § 2), the temperature variance
is distributed as follows: 5.88 × 10−2 is in the mean field θ, 6.6 × 10−3 is in the
sin k0x0 sin k0y0 mode, and 6.5× 10−6 is in each of the 2k0 modes. The relatively large
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amplitude of the mean-field terms can be rationalized in the same way as was done
for the two-dimensional case: consideration of the asymptotic limit µ→ 0 shows that
the amplitude of the mean field should exceed the amplitudes of the 2k0 harmonics by
a factor of O(µ−4)� 1, and exceed the sin k0x0 sin k0y0 mode by a factor O(µ−2)� 1.

It is easy to see that when the (small) triad terms are neglected, the three-dimensional
equivalent of (3.10) is

(1− τ) ∂
∂t0

(
T1

T2

)
+

1

2

(
1

τ
− τ
)(

∂2

∂z2
0

− k2
0

)(
T1

T2

)∑
i=1,2

[(
∂2

∂z2
0

− k2
0

)
Ti · Ti

−
〈(

∂2

∂z2
0

− k2
0

)
Ti · Ti

〉]
+ τ

(
∂2

∂z2
0

− k2
0

)(
T1

T2

)
+ k−2

0 τ

(
∂2

∂z2
0

− k2
0

)4(
T1

T2

)
= 0.

(3.12)

This system is totally degenerate with respect to the rolls vs. cells, in the following
sense. If T0(z0, t0) is a solution of (3.10), then for all (α, β) such that α2 + β2 = 1,(

T1

T2

)
=

(
αT0

βT0

)
(3.13)

will be a solution of (3.12). Thus, in this ε → 0 mean-field theory all the possible
planforms are equivalent, a feature which also occurs in the other weakly nonlinear
asymptotic theories based only on the mean-field modification (see the mean-field
theories cited by Proctor & Holyer 1986). It also follows from (3.12) that the in-
tegral characteristics of the two-dimensional solutions (fluxes, etc.) should be close
to the corresponding three-dimensional solutions, which was indeed observed in our
numerical calculations (see § 2).

Even though the foregoing mean-field theory (3.12) is very useful in estimating
the amplitude of the fluxes and in explaining why the three-dimensional fluxes and
structures are so close to those observed in two dimensions, any attempt to understand
the planform selection must consider the evolution of the small sin k0x0 sin k0y0 mode
that actually determines the planform (Proctor & Holyer 1986). Such an analysis will
be presented in the following section, but the reader who is more interested in the
relevance of the foregoing solutions to previous laboratory experiments may proceed
directly to § 5.

4. Planform selection
4.1. Instability of the steady two-dimensional rolls in the limit ε→ 0

Consider a steady-state roll (3.1) oriented in the y-direction, whose temperature field
at the leading order (according to the two-dimensional asymptotic theory in § 3.1) is

Tbasic = ε1/4T1(z0) sin k0x0, (4.1)

where T1(z0) is a steady-state solution of (3.10), such as presented in figure 3(a). Now
introduce a relatively small perturbation consisting of a ‘cross-roll’ mode

Tc−r = ενT̃2 sin k0y0 + · · · , (4.2)

and the ‘interaction’ mode (mostly responsible for the transfer of energy from the
basic state (4.1) to the ‘cross-roll’ mode (4.2))

Tint = ενT̃12 sin k0x0 sin k0y0 + · · · ,
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where ν > 1
4
. The following expansion is equivalent to the linear stability analysis of

the two-dimensional rolls, and it will not be necessary to specify the particular value
of ν. (The assumption about the scaling of a perturbation as εν is guided only by
the consideration that the asymptotic expansion in one parameter is usually more
rigorous than the expansion in two parameters and more convenient as well.)

When the temperature T = Tbasic + Tc−r + Tint is substituted in the advection–
diffusion equation (2.1c) and the salinity is considered similarly, then at order εν+1/2

we obtain

S̃2 = T̃2, w̃2 =

(
∂2

∂z2
0

− k2
0

)
T̃2,

S̃12 = T̃12, w̃12 =

(
∂2

∂z2
0

− 2k2
0

)
T̃12,

where εν S̃2 sin k0y0, ε
ν+1/2w̃2 sin k0y0 are the leading-order salinity field and the vertical

velocity field in the ‘cross-roll’ mode, εν S̃12 sin k0x0 sin k0y0, and εν+1/2w̃12 sin k0x0 sin k0y0

are those fields in the ‘interaction’ mode. The order-εν+3/4 balances in the continuity
equation (2.1b) and in the vorticity equation (∂u/∂y − ∂v/∂x = 0) determine the
order-εν+1/2 horizontal velocity components. For the ‘cross-roll’ mode we have

v = εν+1/2ṽ2 cos k0y0 + · · · , ṽ2 =

(
k−1

0

∂3

∂z3
0

− k0

∂

∂z0

)
T̃2, u = 0

at this order; and for the ‘interaction’ mode we have

u = εν+1/2ũ12 cos k0x0 sin k0y0 + · · · , ũ12 =
1

2k0

(
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− 2k2
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T̃12,

v = εν+1/2ṽ12 sin k0x0 cos k0y0 + · · · , ṽ12 =
1

2k0

(
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∂z3
0

− 2k2
0

∂

∂z0

)
T̃12.

Now consider the O(εν+1) terms in the advection–diffusion of the temperature
equation (similar analysis of the salinity equation would be redundant since we
showed that S = T at the leading order in all the modes). If the time derivatives of
(T , S) are non-negligible at this order, then the time should be rescaled as t = ε−1t0.
When the terms proportional to sin k0x0 sin k0y0 and the terms proportional to sin k0y0

in the temperature equation are isolated (at order εν+1), after extensive algebra we
obtain a closed system of the rescaled equations:

∂T̃12

∂t0
+ (D2 − k2

0)T1 ·DT̃2 + DT1 · (D2 − k2
0)T̃2 = 0,

∂T̃2

∂t0
+ 1

2
(D3 − k2

0D)T1 · T̃12 + 1
2
(D2 − k2

0)T1 ·DT̃12

+ 1
4
T1 · (D3 − 2k2

0D)T̃12 + 1
2
DT1 · (D2 − 2k2

0)T̃12 = 0,


(4.3)

where D ≡ ∂/∂z0. This system, linear with respect to (T̃12, T̃2), describes the instability
of the basic steady state T1 with respect to the (small) ‘cross-roll’ perturbation.

The system (4.3) was integrated numerically to determine whether steady states T1

are unstable. We used the steady solutions of (3.10) obtained numerically in § 3.1 for
T1, initiated calculations with a random perturbation for (T̃12, T̃2), and integrated
(4.3) using a pseudo-spectral method similar to the one employed previously. For all

the values of µ considered, the norm of the perturbation E =
√〈T 2

2 〉 was growing in
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R = 2.6 R = 2.2 R = 1.6

µ = 1:20 Roll Roll Square cell
µ = 1:40 Roll Square cell Square cell
µ = 1:80 Square cell Square cell Square cell

Table 3. Stability of two-dimensional solutions. The final planform.

time, i.e. the average growth rate

λ̃ = lim
∆→∞

(
1

∆
ln
E(t0 + ∆)

E(t0)

)
was always positive. Furthermore, this growth rate monotonically increased when µ
was decreased, which implies that tall rolls are strongly unstable with respect to the
cross-roll perturbations. The ‘fastest growing modes’ (not shown), which eventually
dominated after the system (4.3) was integrated in time (starting from a random
initial perturbation), had large amplitudes in the vicinity of the boundary layers
near z = 0, H and relatively small amplitudes in the interior. This indicates that the
instability has a quasi-local character and is related to the large vertical gradients of
the basic state in the boundary layers.

Note that if one considers only the solutions in which variations in z occur
(uniformly) on much larger scales than the variations in x (i.e. D � k0) and neglects
the corresponding terms in (4.3), then these equations reduce to a stable system,
because there would be a positive definite quadratic norm of a perturbation which

is conserved: (∂/∂t0)〈T 3/2
1 (T̃ 2

2 + T̃ 2
12)〉 = 0. The assumption ∂/∂x � ∂/∂z, used in

most of the previous nonlinear theories for salt fingers, apparently accounts for the
incorrect result that two-dimensional motion is stable (as in the Proctor & Holyer
1986 model). The instability of the two-dimensional fingers with the boundary layers
where ∂/∂x ∼ ∂/∂z shows how sensitive the double-diffusive system is to a proper
resolution of the small vertical scales.

4.2. Numerical calculations for finite ε

The foregoing asymptotic theory is limited to the demonstration of the linear in-
stability of two-dimensional motion (for ε→ 0), and therefore it is possible that the
planform realized in the experiments may be some combination of rolls and cells. (In
connection with the latter possibility we remark that there is experimental evidence
for realization of the complicated structures that cannot be clearly identified with
either rolls or cells as in Chen & Sandford (1976).) In order to determine the actual
planform of the fingers we use numerical calculations for the full high-Prandtl-number
equations (2.1). These calculations were initiated using the asymptotic steady solution
(3.11), (3.13) for various (finite) ε and µ. We used (α, β) = (0.995, 0.1) in (3.13), which
corresponds to a roll oriented in the y-direction slightly perturbed by a ‘cross-roll’
disturbance. The results of these experiments are summarized in table 3, which shows
that for some values of (R, µ) the three-dimensional instability results in a complete
disruption of the rolls and in the transition to a predominantly square cell pattern,
while for other cases the planform remains quasi-two-dimensional (with only a small
variation in the y-direction).

Figure 5(a, b, c) shows such a transition from a ‘roll’ to a ‘square cell’ structure for
the (µ, R) = (1 : 40, 2.2) calculation. This transition did not occur at the same time
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(a)

(b)

(c)

z= 1
2H z= 1

64H

Figure 5. Transition from rolls to square cells. Numerical calculations were initiated by the
two-dimensional asymptotic steady state with R = 2.2, µ = 1 : 40 perturbed by a small cross-roll
mode (see the text). (a) Horizontal cross-sections of the temperature field across the boundary layer
(z = 1

64
H) and across the interior region (z = 1

2
H) initially (t = 0). (b) The same as in (a) but for

t = 400. The boundary layer cross-section transforms to the square cell type structure, while the
interior cross-section still resembles the rolls. (c) The same for t = 4600. Transition to the square
cell planform is now completed at all levels.

at different levels in z. The three-dimensional character appears first in the boundary
layers near z = 0, H (see figure 5b), as expected from the structure (not shown) of the
fastest growing cross-roll perturbations (§ 4.1); subsequently the interior region also
transforms into a three-dimensional cell (figure 5c). Such effects also occurred in the
experiments (not shown) in which rolls were perturbed only by a small-scale random
noise. Although the precise conditions (table 3) favourable for the square cells (rolls)
are yet to be explained, the apparent tendency for formation of the significantly
three-dimensional fingers when the aspect ratio (µ) is small is consistent with the
considerations in § 4.1 which show that the growth rate of the three-dimensional
instability increases with H .

Especially noteworthy is the fact that in the parameter range corresponding to a
typical laboratory salt–sugar experiment, namely R ∼ 1.6, µ ∼ 1:40 (as cited by Radko
& Stern 1999), the observed square cells are clearly preferred in our model (see table
3). We also reproduced that (R, µ) = (1.6, 1 :40) experiment by initiating calculations
with a small-scale random noise, and again obtained remarkably regular fingers with
an almost perfect square cell structure (not shown). The foregoing analysis suggests
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µ 1:10 1:30 1:40 1:50 1:100

−〈wT 〉 1.14 5.14 7.66 10.4 22.55
C (cm s−1) 4.9× 10−4 5.1× 10−4 5.1× 10−4 5.2× 10−4 4.4× 10−4

Table 4. The values of C for the steady states consisting of one finger pair, R = 1.6.

that the observed (Shirtcliffe & Turner 1970) preference for the square cell planform
might be caused by the instability of the solutions with non-square planforms that
occurs for the particular values of (R, µ). We should also mention that the time
involved in the transition from one planform to another (∼ µ−2ε−1) is very large
because the ‘interaction’ term T̃12 is typically quite small (as indicated in § 3.2); this
explains why we were able to obtain numerically (§ 2) both steady rolls and steady
square cells, even when the latter solutions are formally unstable.

5. The ∆S4/3 flux law
5.1. Flux law coefficient as determined from the numerical ‘rigid lid’ calculations

As previously mentioned, most of the laboratory experiments show that the salt flux
through an interface containing salt fingers can be parametrized as

〈wS〉dim = C(∆S∗)4/3, (5.1)

where ∆S ∗ is the given (dimensional) S-difference across the interface, and C depends
only on the density ratio (for fixed values of the molecular diffusivities). The 4/3 law
was originally suggested by Turner (1967) as a plausible extension of results from
turbulent thermal convection, and, as Taylor & Veronis (1996) pointed out, a direct
application of it to the quite different physics of the double-diffusive convection may
be suspect. Thus, an additional justification is needed to use the 4/3 law for the
salt-finger interface. One of the purposes of the following theory is to verify this
similarity law for the salt fingers in the ‘rigid lid’ configuration.

One fundamental difference between our rigid lid model and the laboratory ex-
periment is that in the latter case the equilibrium height of the finger interface is
independent of its initial value and adjusts to a definite function of (∆T ∗,∆S∗). In our
model, however, the height of a finger zone is a free parameter, which we can vary
even for fixed ∆T ∗,∆S∗, and therefore on purely dimensional grounds we might expect
that C in our model depends on the distance (H ∼ µ−1) between the rigid boundaries.
In order to determine the extent of this dependence, the flux law coefficient C in (5.1)
is first expressed in terms of our non-dimensional quantities (R,H , and flux 〈wT 〉):

C =
〈wS〉dim
(∆S∗)4/3

=

(
gk2

T

ν

)1/3
γ−1〈wT 〉
H4/3

R4/3. (5.2)

For R = 1.6 and various µ (or H) we numerically computed the three-dimensional
one-finger-pair equilibrium fluxes, and then C (with positive sign) was obtained from
(5.2) using kT = 1.5×10−5 cm2 s−1 for the salt–sugar experiment, ν = 1.3×10−2 cm s−1,
and g = 980 cm s−2. The results are in table 4.

Thus we have the important numerical result that even in the rigid lid model the
value of the flux law coefficient is insensitive to changes in the height of a finger layer,
and is almost uniquely determined by R. A theoretical explanation of this property
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Figure 6. Flux law constant C as a function of Rρ ≡ R = τ−1(1 + ε)−1 in the rigid lid model and
in the laboratory experiments. (a) Comparison of the asymptotic theory (5.3) (solid curve) with the
results of numerical calculations symbols: circle, two-dimensional calculations with one finger (see
text); open square, three-dimensional calculations with 5× 5 fingers; triangle, two-dimensional ex-
periments with 10 fingers; filled square, two-dimensional experiments with one finger at R = 1.6 and
various aspect ratios. Experiments marked by circles, open squares and triangles are for µ = 1:10.
The theoretical estimate agrees with the numerics within a factor of 2. (b) Modified from figure 7 in
Taylor & Veronis (1996) (the straight line is an average of the other laboratory experiments). The
theoretical curve in (a) is superimposed on the results of the laboratory experiments. Qualitative
agreement between these estimates suggests that the dynamics of the finger zone in the rigid lid
model and in the laboratory experiments (where the finger zone is sandwiched between the two well
mixed reservoirs) are similar. (c) C from numerical experiments as a function of ε in logarithmic
coordinates. The same symbols as in (a) are used for the data points. For small values of ε the
numerical C agree well with the asymptotic (ε→ 0) power law (5.3) presented by a solid line.

is deferred to § 5.3, but first we will compare C(R) in our rigid lid model with the
experimental data (Taylor & Veronis 1996).

5.2. Comparison of the numerical, analytical, and laboratory results

In figure 6(a) we plot C(R) obtained from several numerical rigid lid experiments
which included the following groups:
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(i) two-dimensional experiments with one pair of fingers (i.e. the width of the
computational domain is approximately equal to the fastest growing wavelength
(2.2)), marked by circles;

(ii) two-dimensional experiments with 10 pairs (the width of computational do-
main exceeded the fastest growing wavelength by a factor of 10) indicated by triangles;

(iii) three-dimensional experiments with 5 × 5 pairs of fingers indicated by open
squares;

(iv) two-dimensional experiments in table 4, indicated by the filled squares.
All the experiments except those in group (iv) were for the aspect ratio µ = 1 : 10,
and the most relevant to observations are the three-dimensional multiple finger
calculations (group iii).

It is of interest to compare these calculations with the asymptotic (ε → 0) theory.
When the scalings in § 3 are used to simplify (5.2) the result is

C(R) = ε4/3C0, (5.3)

where C0 = (gk2
T/ν)

1/3τ−4/3〈w0T0〉/H4/3
0 . For the µ = 1 : 10 case in figure 3(a, b) (for

which 〈w0T0〉 = −1.67, and H0 = π31/4µ−1) we obtain C0 ≈ 1.3× 10−3, and the values
of C0 for µ = 1 : 5, 1 : 20, and 1 : 40 are very close to that for µ = 1 : 10. The
extrapolated asymptotic relation (5.3) in figure 6(a) is qualitatively consistent with the
numerical calculations; the extrapolation overestimates C approximately by a factor
of 2 for small values of R, but provides correct values for larger R (for which the
aforementioned asymptotic ε → 0 is most appropriate). The agreement of the curve
with the group (iii) three-dimensional calculations is especially noteworthy.

In figure 6(b) (modified from Taylor & Veronis 1996) we superimposed our analyt-
ical expression (5.3) for the rigid lid model on the data obtained by Taylor & Veronis
in a series of laboratory experiments. The most interesting and important result in
figure 6(b) is that the actual values of C in the laboratory experiments are consistent
with the theoretical C(R) in our rigid lid model, and the former values agree even
better with our numerical calculations (see the data for group (iii) in figure 6a). These
two theoretical estimates not only correctly predict the order of magnitude and the
average slope of the laboratory C(R) curve but they also capture the local increase of
the slope for large R and decrease of the slope at the lower R.† Such an agreement
implies that the basic physics involved in the equilibration of fluxes in the laboratory
experiment is described by our simple rigid lid model, in which the vertical velocity
is assumed to be zero at the top and bottom of the finger interface. The main reason
for that (as was mentioned in the preliminary calculation of Radko & Stern 1999)
may be that in the laboratory experiment the vertical velocity is substantially reduced
when the particles penetrate the thin transition layer separating the finger interface
from the well mixed layer.

The plot of C(ε) from the numerical calculations in logarithmic coordinates (see
figure 6c) demonstrates a good agreement with the theoretical power law (5.3) for the
moderately small values of ε.

5.3. Rationalization of the flux law for the rigid lid calculations

In order to show why the flux law coefficient C in our rigid model is not sensitive
to the changes in the distance between the rigid boundaries (see the table 4) we fix

† It should be mentioned that although Griffiths & Ruddick (1980) obtained lower values of C
than Taylor & Veronis (1996), they concentrated on the parameter range corresponding to smaller
R, while our asymptotic result in figure 6(b) and Taylor & Veronis’s data correspond to larger
values of R. Comparison with Taylor & Veronis is therefore more appropriate.
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Figure 7. Mean fields (θ, σ) for the two-dimensional steady state with (µ, R) = (1 : 40, 1.6). Note
the remarkably uniform gradients of (0, σ) in most of the interior (see text) and the well-defined
boundary layers at the top (z = H) and at the bottom (z = 0).

R and examine how the increase of the distance between the rigid boundaries affects
our steady solutions. We should mention that when H is too large (for example,
when µ < 1 : 200 for R = 1.6) numerical experiments (not shown) reveal that the
regular finger pattern (such as in figure 1) changes to a more irregular structure, an
effect apparently related to the behaviour found in an unbounded model (see Stern
& Radko 1998; Radko & Stern 1999). This regime will not be considered below, and
we will assume that H is such that the fingers are steady and regular (even when the
formal limit H →∞ is computed).

Before proceeding further we remind the reader that there are significant differences
in the detailed structure of the single-finger-pair solutions (e.g. figure 1), for which the
periodic boundary conditions in x and y are imposed at the distances approximately
corresponding to the fastest growing (on the unperturbed linear gradient) modes, and
the ‘multiple-finger’ numerical solutions (e.g. figure 2) obtained with large computa-
tional domains. As was mentioned in § 2 the latter solutions are less regular spatially
and not quite steady. However, the purpose of this section is to explain qualitatively
the dependence of fluxes on H , and their order of magnitude, and therefore we
consider a much simpler one-finger-pair model. (Note that the numerically obtained
fluxes in the multiple-finger runs and the one-finger calculations differ no more than
by a factor of 2).

All the numerically obtained one-finger-pair steady states look very similar (unless
µ is exceedingly small, as mentioned above). The temperature field (similar to figure
1), as well as the salinity field, consists of a remarkably uniform interior with

∂

∂z
(T ′, S ′, w) ≈ 0, (5.4)

bounded at the top (near z = H) and at the bottom (near z = 0) by well-defined
boundary layers. As was shown previously (§ 3), such a steady state is achieved by the
modified mean field (θ, σ). The gradients of the mean fields (∂/∂z)(θ, σ) ≡ (ai, bi) ≈
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const. are also remarkably uniform in the interior as shown in figure 7 for a two-
dimensional steady state with (µ, R) = (1:40, 1.6). In order to consider the equilibrium
state of long laminar fingers in the interior region we substitute (5.4) in (2.1) to obtain

∂T̄new

∂z
w = ∇2

hT
′,

∂S̄new

∂z
w = τ∇2

hS
′, ∇4

hw = ∇2
h(S
′ − T ′), (5.5)

and this implies that the fingers which are fastest growing on the original (unper-
turbed) T , S gradients should be marginally unstable on the new uniform gradient
(∂T̄new/∂z = 1 + ∂θ/∂z, ∂S̄new/∂z = R−1 + ∂σ/∂z) in the interior (a similar idea was
also used by Schmitt 1979). When the wavenumber of the fastest growing finger kf
(c.f. (2.2)) is used in (5.5), the result is[

1

τ

(
1

R
+ bi

)
− (1 + ai)

]
= k4

f =
1

3

(
1

Rτ
− 1

)
, (5.6)

where ai = ∂θ/∂z and bi = ∂σ/∂z are the interior mean-field gradients. (Note that in
the one-finger-pair model the linearly fastest growing finger retains its wavenumber
in the equilibrium state, whereas in the multiple-finger models this may not be exactly
correct.)

The steady mean-field equations obtained by averaging (horizontally) the
advection–diffusion equations (2.1c, d) are

∂

∂z
θ = [(wT ′)− 〈wT ′〉], ∂

∂z
σ = τ−1[(wS ′)− 〈wS ′〉]. (5.7)

The ratio of these at the rigid walls (where w = 0) yields

ab

bb
= τγ, (5.8)

where ab ≡ ∂θ/∂z|z=0, bb ≡ ∂σ/∂z|z=0, and γ ≡ 〈wT ′〉/〈wS ′〉 is the flux ratio.
Consider the simplified model for the structure of the temperature and salinity

mean fields in figure 8, in which the boundary layers are assumed to be purely
conductive with (∂/∂z)(θ, σ) ≡ (ab, bb) ≈ const, and the interior gradients are uniform
as well. We also use the fact that the boundary layer thickness d estimated for the
temperature field is close to that for the salinity, which was observed in all our
numerical experiments (see figure 1a, b) and explained in the asymptotic theory (§ 3).
Since the total variation in (θ, σ) across the entire layer (0 < z < H) vanishes, the
mean fields in the boundary layer are related to that in the interior by

ai

ab
=
bi

bb
= − 2d

H − 2d
. (5.9)

The solution of the four equations (5.6), (5.8), (5.9) results in an expression for the
steady heat flux:

−〈wT 〉 = ab =
2

3

(R−1 − τ)γτ
(1− γτ2)

[
H

2d
− 1

]
, ai = −2

3

(R−1 − τ)γτ
(1− γτ2)

. (5.10a, b)

The flux ratio 0 < γ < 1 is known to be nearly constant; in the sugar–salt laboratory
experiments (and in all our numerical experiments) it is bounded by 0.7 < γ < 1, and
therefore γ in (5.10) does not depend significantly on H . For R = 1.6, for example,
various aspect ratios ranging from µ = 1:10 to 1:100 gave values of γ that differ by
less than 3%. In order to estimate how the heat flux (and C) depends on H in (5.10),
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θ (z) σ (z)

d

T+θ

S+σ

ρ=σ–θ ρ total

(a) (b)

(c) (d )

Figure 8. Schematic diagram of the mean fields in a rigid lid steady state. (a) (θ, σ): departure
of the mean temperature and salinity fields from the linear gradients. Compare with figure 7. (b)
The total mean fields T̄total = T̄ + θ, S̄total = S̄ + σ; dashed lines correspond to the original linear
gradients T̄ , S̄ . (c) The mean density ρ̄ = σ − θ (or, more correctly, departure of the mean density
from the original linear gradient). (d) The total mean density field, which consists of the original
linear gradient (dashed line) and its modification due to the salt fingering (shown in c).

it only remains to determine the thickness of the boundary layer d as a funtion of
H . Since our previous numerical results suggest that as we increase H the boundary
layer thickness decreases slowly and the fluxes increase (see table 4), we tentatively
assume and subsequently verify that when H → ∞, d → 0 and (ab, bb) → ∞ (for
fixed ε).

Let us assume (by extrapolating the asymtotic considerations in § 3 to finite ε) that
in the steady state the vertical advection of mean field is approximately balanced by
the diffusive terms (∇2T ′, τ∇2S ′). Then for the boundary layer 0 < z < d we have

(1 + ab)w ∼ ∇2T ′,
(R−1 + bb)w ∼ τ∇2S ′,
∇4w = ∇2

h(S
′ − T ′).

 (5.11)

Eliminating T ′ and S ′ in (5.11) results in

∇6w ∼ ∇2
h([R

−1τ−1 − 1 + τ−1bb − ab]w). (5.12)

If ab increases as H →∞, then (R−1τ−1−1) in (5.12) can be neglected, and when (5.8)
is used (5.12) becomes

∇6w ∼ (γ−1τ−2 − 1)ab∇2
hw. (5.13)

Since the horizontal scale of fingers is independent of H whereas d−1 → ∞ has been
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assumed, (5.13) yields

d−6 ∼ k2
f(γ
−1τ−2 − 1)ab. (5.14)

Solving (5.14) and (5.10a) for d and ab as a function of H (or µ) we finally obtain

d ∼
[

3

Hk2
fε

]1/5

, (5.15a)

−〈wT ′〉 = ab ∼ εγτ2

31.2(1− γτ2)
H6/5(k2

fε)
1/5 ∼ (2π)6/5γτ2

3(1− γτ2)
µ−6/5ε. (5.15b)

These two results confirm the assumption that as H increases the (non-dimensional)
thickness of the boundary layer decreases and the fluxes increase. The foregoing
theory involved several order-of-magnitude approximations and therefore it is not
surprising that the coefficient in (5.15b) is overestimated by a factor of 2.5 (relative
to the numerics). However, the power laws in (5.15) are consistent with our previous
results (§ 3) which suggest that the fluxes are proportional to ε (for fixed µ) and to
µ−6/5 (for fixed ε). As far as the fully nonlinear numerical calculations are concerned,
the least-square fit of the straight line to the data in table 4 plotted in logarithmic
coordinates yields the value of −1.31 for the exponent. However, when the estimate is
made excluding the largest µ = 1:10 (since µ→ 0 in the foregoing theory) the value
of the slope is −1.22, which agrees well with our theory (µ−6/5).

From (5.15) and (5.2) we see how the flux law coefficient depends on H:

C =

(
gk2

T

ν

)1/3
R4/3

γ

ab

H4/3
∼
(
gk2

T

ν

)1/3

F(R)H−2/15, (5.16)

where the coefficient

F(R) = R4/3 ετ2

31.2(1− γτ2)
(k2
fε)

1/5

depends only on R. Equation (5.16) for C implies a very weak dependence on H: a
ten-fold increase in H results in only a 26% decrease of the flux law coefficient. This
explains why C in our numerical experiments (table 4) is insensitive to the changes
in H , and why the comparison of C(R) in our model with the experimental values
could be meaningfully performed without using a particular (corresponding to the
experiment) value of H .

Finally, let us rewrite the relation (5.16) in terms of (dimensional) H∗, i.e. estimate
how the flux law constant C will change if we fix (∆T ∗,∆S∗) and increase only the
(dimensional) height of the layer. Since the length unit is λ = (kT ν/gT̄

∗
z )1/4 (see § 2)

we have

H = (H∗)3/4

(
g∆T ∗

kT ν

)1/4

, (5.17)

and the substitution of (5.17) in (5.16) results in

C ≈ F(R)
g3/10k

7/10
T

ν3/10
(H∗)−1/10(∆T ∗)−1/30. (5.18)

The exponents −1/10 and −1/30 in (5.18) correspond to extremely weak dependences
and, therefore, our C is effectively a function of the density ratio R only. This proves
that the 4/3 flux law is a sufficiently accurate approximation for a rigid lid model.
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6. The vertical extent of the finger zone

As previously mentioned, H∗ is a free parameter in our rigid lid model, whereas in
most laboratory experiments (Linden 1978) the equilibrium height of a finger zone
cannot be controlled but is a function of (∆T ∗,∆S∗). (The rare exception occurs
for very weak fingers in the run-down sugar–salt experiments, such as described by
Taylor & Veronis 1996.) Thus, in order to explain the observed height of a ‘strong’
finger zone we have to incorporate into our rigid lid model additional ideas about
the mechanism that limits the vertical scale of the experimentally observed fingers.
Previous theories (Stern & Turner 1969; Kunze 1987) assumed that the limitations on
the thickness of the finger zone result from various instabilities of long fingers (e.g.
collective instability). The significance of Stern’s (1969) collective instability effect
for layer formation was questioned by Shen (1989) on the basis of his numerical
calculations. Shen suggested that the breakup of fingers occurs due to the formation
of local inversions of the density stratification in the transition region at the edges
of the finger interface. In this section we will also argue that the mechanism which
stops the (vertical) spreading of the finger interface in the laboratory experiments is
directly related to the formation of thin boundary layers which, for certain values of
the parameters, may exhibit a strong local instability (different from that previously
associated with the interior of finger zone).

As previously mentioned, observations show that when particles penetrate from
the finger interface into the well mixed layer they significantly slow down in thin
‘transition’ zones (see the shadowgraphs in Linden 1978). The resulting O(1) decrease
in the convective fluxes (wT ,wS) in these thin layers is compensated by the conductive
fluxes (∂θ/∂z, τ∂σ/∂z), which requires a large positive salinity gradient in the transition
layer. Such well-defined boundary layers also occur in all our rigid lid numerical
experiments. They are steady and regular for moderate heights of the finger zone
(see figure 9a for the (R, µ) = (1.6, 1 : 50) two-dimensional case); however, when
we increase the height of the finger zone, these boundary layers become irregular
and unsteady, as shown by the calculation in figure 9(b) in which H is doubled
(µ = 1:100).

In order to determine conditions for this new instability of the boundary layer
we will make the ‘marginal instability’ assumption† that it occurs when a local
thermohaline Rayleigh number

Ra =
g(d∗)4

ν

(
1

ks

(
∂S̄total

∂z

)
dim

− 1

kT

(
∂T̄total

∂z

)
dim

)
, (6.1a)

exceeds a certain critical value (tentatively estimated as Rac ∼ 1000), where d∗ is the
dimensional boundary layer thickness. Note that this expression is a valid instability
criterion for the thermohaline case of a gravitationally stable (∂ρ̄∗total/∂z < 0) layer,
and for a ‘top-heavy’ layer of fluid (∂ρ̄∗total/∂z > 0) as well. In the latter case the
term due to the temperature gradient in (6.1a) will be significantly less than the term
due to the salinity gradient, and the resulting instability will be similar to Rayleigh
convection.

We now show that the foregoing assumption is also supported by the numerical
calculations in figure 9(a, b). In our non-dimensional variables the definition (6.1a)

† The analogous assumption for the convection from a heated surface was made by Howard
(1964), who estimated the maximum height of the thermal boundary layer (and, subsequently, the
heat flux) by setting its local Ra ∼ 1000, and obtained a reasonable agreement with the experiments.
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(a)

(b)

Figure 9. Isopleths of the temperature in the boundary layer near z = H for the two-dimensional
one-finger calculations with R = 1.6. (a) Aspect ratio is µ = 1 : 50, the boundary layer Rayleigh
number is Ra = 1440; (b) µ = 1:100, Ra = 2800. The boundary layer in (a) is stable and laminar,
while in (b) it is distorted by the local instability. This is related (see the text) to the larger values
of the boundary layer Rayleigh number.

becomes

Ra = d4

[
τ−1

(
R−1 +

∂σ

∂z

)
−
(

1 +
∂θ

∂z

)] ∣∣∣∣
b.l.

= d4[τ−1(R−1 + bb)− (1 + ab)]. (6.1b)

From the results in figure 9(a) (regular boundary layer), equation (6.1b) gives Ra =
1440,† and for the state in figure 9(b) (unstable boundary layer) Ra = 2800. Similar
features have been observed in the three-dimensional calculations as well (not shown),
which confirms that the boundary layer Rayleigh number (6.1a) determines a new
instability of the thin boundary layers. This point should not be regarded as a mere
extension of the well-known laminar instability theory, since the boundary layer
instability may be affected by the already existing finite-amplitude salt fingers (which
must ultimately be considered in a complete theory).

This new instability of the boundary layers (figure 9b) does not penetrate far into
the interior because of the (marginally) stable stratification there. The adjacent rigid
wall (at z = 0, H) also acts to localize this instability, but in the laboratory experiments
there is no such wall and thus the local instability in the transition layer penetrate into
the well mixed layers. The resulting large-scale turbulent motion in the mixed layers
shears away the finger ends from the transition layer (thereby controlling the vertical
extent of fingers H). It is important to mention that the Rayleigh number in (6.1b)
increases with the increase of the height of the finger zone H; this was observed in
the numerical calculations and can be explained using our simplified analytical theory
in § 5.3 (d ∼ H−0.2, (ab, bb) ∼ H6/5, and therefore Ra ∼ H0.4). Thus, in a laboratory
experiment in which the two well-mixed layers of T , S are initially separated only
by a sharp interface, the salt fingers can grow in length until their height is such

† Note that since the gradients in the boundary layer are not uniform, unlike that in the classical
thermohaline instability problem, the Rayleigh number could be defined in several ways. In this
paper we consistently computed d as a distance from the rigid boundary to the nearest extremum
of θ(z) and used the average of gradients at the top and at the bottom of the boundary layer for
(∂/∂z)(T̄total , S̄total)|b.layer in (6.1a, b).



Salt fingers in a vertically bounded layer 157

10

C
1 

(c
m

)

1.2 1.6 2.0

R

8

6

4

2

0
2.4 2.8

Ra=2204

Ra=1180

Figure 10. Comparison of the theoretical expression for the coefficient C1 in the one third law (6.6)
with the results of the laboratory experiments (Linden 1978). The analytical theory suggests that
the values of C1(R) should be located in the region bounded by the two solid lines; this is consistent
with Linden’s data presented by the solid squares here. The slope of the theoretical C1(R) curves is
also in apparent agreement with the experimental data.

µ Ra H0

1:5 209 21
1:10 316 41
1:20 540 83
1:40 794 165
1:80 1180 331
1:160 2204 662

Table 5. Boundary layer Rayleigh number determined from the asymptotic theory.

that the boundary layer Rayleigh number reaches the critical value. Despite the
complexity of the laboratory experiment (compared to our idealized model) we now
assume that the previously obtained Rayleigh number condition for the onset of
boundary layer instability in the rigid lid model approximately corresponds to that
in the laboratory experiment, and the corresponding critical height of the finger layer
Hc will be computed accordingly.

On the basis of the calculations in figure 9(a, b) we estimate that the critical value
of the boundary Rayleigh number Rac is in the range

Rac ∼ 1000–2000. (6.2)

In order to obtain an explicit estimate for H∗ as a function of (∆T ∗,∆S∗), correspond-
ing to the critical boundary layer Rayleigh number (6.2) we will use the asymptotic
ε→ 0 theory, which was shown (§ 3) to be adequate even for moderately large values
of ε. According to this theory (see (3.6)) (6.1b) reduces to

Ra = d4
0

[
1 + (τ−2 − 1)

∂θ0

∂z0

∣∣∣∣
b.l.

]
, (6.3)
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where d4
0 = εd4. The values of ∂θ0/∂z0|b.l. and d0 for various µ (and corresponding

H0 = 3−1/4µ−1π) were obtained from the asymptotic steady-state (two-dimensional)
calculations (i.e. numerical solution of (3.10)), and the resulting Ra computed from
(6.3) are listed in table 5. This indicates that 331 < H0 < 662 corresponds to the
estimated range (6.2) of Rac. The corresponding value of H = Hc is then

Hc ∼ ε−1/4H0 ∼ 331(R−1τ−1 − 1)−1/4 for Ra = 1180,

Hc ∼ 662(R−1τ−1 − 1)−1/4 for Ra = 2204.

}
(6.4)

Now relate the above non-dimensional H = Hc to the dimensional variables using
(5.17) to obtain

H∗ = C1(∆S
∗)−1/3, (6.5)

where

C1 = (kT ν/g)1/3 H4/3
c R1/3.

We have thereby obtained a similarity law (6.5) in which C1 is independent of ∆S ∗
and is a function of (R, τ). Let us compare the values of a coefficient C1 suggested by
our model with the values of C1 from the laboratory experiments. For the asymptotic
theory

C1 ∼
(
kT ν

g

)1/3
2285

(R−1 − τ)1/3
for Ra = 1180,

C1 ∼
(
kT ν

g

)1/3
5751

(R−1 − τ)1/3
for Ra = 2204,

 (6.6)

and these theoretical relationships are plotted in figure 10. In order to estimate the
experimental values of C1 we used the data for the ‘stable runs’ obtained by Linden
(1978), computed C1 directly from (6.5), and also plotted the laboratory data in figure
10. It should be noted that the exact values of R and ∆S∗ by the time the system
reached the quasi-equilibrium state are uncertain in each experiment. We used the
data corresponding to the beginning of the experiments, whereas (∆T ∗,∆S∗) may
change somewhat by the time the equilibrium is reached (in which case there would
be lower values of C1 and larger values of R). Nevertheless, we are mainly interested
here in the order-of-magnitude estimates of the coefficients in the similarity laws, and
we see (figure 10) that all the experimental points belong to the area bounded by
the two curves approximately corresponding to the estimated range of the critical
Rayleigh numbers (6.2).

Now we note that these boundary layers are actually gravitationally unstable for
conditions typical for the laboratory experiments (−Nu > 1) since

∂ρtotal

∂z
= R−1 +

∂σ

∂z
−
(

1 +
∂θ

∂z

)
= (1− γ−1τ−1)〈wT 〉 − (1− R−1) > 0.

and therefore their instability is similar to the ‘top heavy’ Rayleigh convection (in
our case driven by the S-component). The foregoing model of layer formation is,
therefore, consistent with Shen’s (1989) interpretation of his numerical results, in
which he related the formation of the quasi-equilibrium salt finger layers to the
appearance of the thin ‘gravitationally inverted’ zones.

We should also mention that the expressions for the critical height of fingers (6.4)
and for the coefficient C1 in the similarity law (6.5) are singular for R → τ−1; this may
be related to the experimental results of Taylor & Veronis (1996) who suggested that
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the similarity law (6.5) fails for sufficiently small ε = (Rτ)−1−1. (Or, alternatively, our
assumption that the amplitude growth of fingers is approximately equilibrated by the
mean-field modification may not be satisfied in the fundamentally time-dependent
processes observed by Taylor & Veronis.)

7. Conclusions
Numerical integration of the large Prandtl number equations for a rigid lid model,

in which the temperature and salinity are prescribed at the top and at the bottom of
the computational box, results in steady-state fingers which are almost z-independent
in the interior, and which are coupled to boundary layers near the rigid plates
(z = 0, H). These finite-amplitude numerical solutions are explained analytically
using an expansion in which ε = (Rτ)−1 − 1 is small (see (3.10)). The equilibration
of the linearly growing normal modes is accomplished by the modification of the
horizontally averaged temperature and salinity ‘mean fields’ (as occurs in the classical
Rayleigh–Bénard convection problem).

The fluxes in the rigid lid model are adequately described by the 4/3 flux law (5.1),
since the dependence of the coefficient C (in the flux law) on the thickness of the finger
layer (H∗) is shown to be extremely weak: C ∼ (H∗)−0.1. The characteristic values of
C as well as their strong (∼ R−6) dependence on R are found to be consistent with
the values of C(R) in the laboratory experiments. This implies that our simple model
is able to capture the essential features of the laboratory experiments even though
the transition zones that separate the finger layers from the well-mixed reservoirs
are not quite rigid (fingers sheared by the large-scale convection can pass through
the transition zone separating the finger interface from the well-mixed layers). The
laboratory values for the equilibrium height of the finger interface are also explained
by assuming that the height of this interface is limited by a new instability of the thin
(and usually ‘top heavy’) boundary layers that form near the interface boundaries
(z = 0, H). We verify that this instability occurs when the local thermohaline Rayleigh
number (based on the thickness of the boundary layer) exceeds a certain critical value.

We also show that for ε → 0 the two-dimensional salt fingers of the roll type are
unstable with respect to the cross-roll perturbations. The finite-amplitude numerical
calculations made in a range corresponding to a typical salt–sugar experiment (R ∼
1.6, µ ∼ 1 : 40) with various initial conditions result in formation of steady fingers
with a regular square cell planform, consistent with those observed in the laboratory
experiments of Shirtcliffe & Turner (1970).

We gratefully acknowledge funding from the National Science Foundation.
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